Automated Classification of Morphologically Identical Mosquito Sibling **Species Using Wingbeat Harmonics**

¹College of Agriculture & Life Sciences, University of Guam, Mangilao, Guam; ²Department of Entomology, North Carolina State, Raleigh University, NC; ³APTIV, Inc., Portland, OR

INTRODUCTION

Wingbeat frequency has been used as a character for differentiating insect species. Here, we show that harmonic patterns associated with wingbeat frequency provide additional species-specific information which can be used to differentiate closely related species with overlapping wingbeat (CA, FL) flew between an infrared LED array and a miniature frequencies.

Here, we report how we used harmonic patterns to differentiate female *Culex pipiens* mosquitoes from *Cx*. *quinquefasciatus*. These sibling species are morphologically identical. Previously, they could be differentiated only by molecular methods.

Figure 1. Origin of harmonics in optically-sensed wingbeat waveforms. Images are from a web page entitled "How Insects Fly" (http://park.org/Canada/Museum/insects/flight/flapping.html). To simulate data from a non-imaging photosensor, we calculated the mean sum of the red, green, and blue values for pixels in each image. This values were plotted as wingbeat waveforms. Fast Fourier transform of these waveforms generate very different spectra, even though wingbeat frequencies are identical.

METHODS

Wingbeat waveforms were recorded using FAST-ID Wingbeat frequencies of female *Cx. pipiens* and *Cx.* quinquefasciatus were not different (Table 1). However, instrumentation developed by APTIV Inc. Waveforms were recorded when female mosquitoes from two colonies of Cx. harmonic patterns for waveforms within each frequency bin *pipiens* (CT, MA) and two colonies of *Cx. quinquefasciatus* were significantly different (Fig. 4). Cx. quinquefasciatus produced stronger higher order harmonics than Cx. pipiens. solar cell (Fig. 2). For each waveform, wingbeat frequency In a cross-classification test with a nearest neighbor classifier was estimated using a YIN estimator, frequency spectrum using wingbeat frequencies and harmonic patterns, 65% of was calculated using a fast Fourier transform, and a harmonic the mosquitoes were classified correctly, 31% were unclassified, and only 4% were misclassified. pattern was derived by integrating area under the frequency spectrum adjacent to each harmonic (Fig. 3).
 Table 1. Number of waveforms in each frequency bin.

Figure 3. Digital signal processing.

Aubrey Moore¹, Charles Apperson², John McLaughlin³, Philipp Kirsch³, Dariusz Czokajlo³

RESULTS

Wingbeat	Cx. pipiens		Cx. quinquefascatus	
Frequency (Hz)	СТ	MA	CA	FL
321–333	10	1	4	1
334–348	16	10	12	4
349–364	27	73	21	1
365–381	67	151	7	2
382–400	67	173	28	11
401–421	40	18	45	25

Figure 4. Harmonic patterns. Each bar represents relative energy associated with each harmonic. Error bars are SEM. Filled circles indicate significant differences.

