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INTRODUCTION METHODS RESULTS

Wingbeat frequency has been used as a character for Wingbeat waveforms were recorded using FAST-ID Wingbeat frequencies of female Cx. pipiens and Cx.
differentiating insect species. Here, we show that harmonic  instrumentation developed by APTIV Inc. Waveforms were  quinquefasciatus were not different (Table 1). However,
patterns associated with wingbeat frequency provide recorded when female mosquitoes from two colonies of Cx.  harmonic patterns for waveforms within each frequency bin

additional species-specific information which can be used to  pipiens (CT, MA) and two colonies of Cx. quinquefasciatus ~ were significantly different (Fig. 4). Cx. quinquefasciatus
differentiate closely related species with overlapping wingbeat (CA, FL) flew between an infrared LED array and a miniature produced stronger higher order harmonics than Cx. pipiens.

frequencies. solar cell (Fig. 2). For each waveform, wingbeat frequency  In a cross-classification test with a nearest neighbor classifier
Here, we report how we used harmonic patterns to was estimated using a YIN estimator, frequency spectrum using wingbeat frequencies and harmonic patterns, 65% of
differentiate female Culex pipiens mosquitoes from Cx. was calculated using a fast Fourier transform, and a harmonic the mosquitoes were classified correctly, 31% were
quinquefasciatus. These sibling species are morphologically pattern was derived by integrating area under the frequency  unclassified, and only 4% were misclassified.
identical. Previously, they could be differentiated only by spectrum adjacent to each harmonic (Fig. 3). Table 1. Number of waveforms in each frequency bin.
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waveforms. Images are from a web page entitled “How Insects Fly”
(http://park.org/Canada/Museum/insects/flight/flapping.html). To [ ””””””””””””””””””””” [
simulate data from a non-imaging photosensor, we calc.ulated the I I] h ﬂ ﬂ ﬂ Jj - I] ﬂ [ n ﬂ v
mean sum of the red, green, and blue values for pixels in each : : T
image. This values were plotted as wingbeat waveforms. Fast Figure 4. Harmonic patterns. Each bar represents relative
Fourier transform of these waveforms generate very different e energy associated with each harmonic. Error bars are SEM.
spectra, even though wingbeat frequencies are identical. Figure 3. Digital signal processing. Filled circles indicate significant differences.
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